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Multiple zeta values
0000

Multiple zeta values(MZVs)

Definition

Multiple zeta values are a real numbers defined by

C(kayeoka) = > H17

ki
0<n<---<ng i=1 n;

where ki,...,ka—1 € Zsg, kg € Zi>1.
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lterated integrals

Definition

The iterated integral for ap, a1, ..., ak,axr1 € R

(a0; a1, - - -, ak; Ak+1) ::/ l_lo.)é,j(tj)7
a

o<t1 < <tp<akt1 j=1

is defined using differential 1-forms

wa(t) =

t—a

MZVs are iterated integrals with a; € {0,1},
ap=0,a3 = 1,3, =0,a,41 =1 and (t) = t. More precisely,

Ckay o ka) = (=1)?1(0;1,{0} 71, .., 1, {0}k 1),
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Hopf algebra structure

o X = {x0,x1}
Q(X) := non-commutative polynomial algebra generated by X
The triple (Q(X), w1, A) is a graded commutative Hopf algebra,
where LI is the shuffle product and A is the coproduct.

e YV :={y,|neN}
Q(Y) = non-commutative polynomial algebra generated by Y
The triple (Q(Y), *, A) is a graded commutative Hopf algebra,
where * is the stuffle product and A is the coproduct.

V.

Here is an important correspondence.

Yoy ** Yn, = X1X67171"'X1X61,71
Lo o 1
Zo<m1<~-.<m, H,‘:l my I(O; 1, .{0}’71_ . {O}n,— : 1)

™ = = =
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Rooted trees and planar rooted trees

Definition
o Arooted tree T = (T,r)isatree T = (V(T), E(T)) in which one
vertex r is designated as the root of the tree T, where V/(T)
denotes the vertex set of T and E(T) denotes the edge set of T.

@ The depth function p7 is a function from V(T) to Z>o which
sends a vertex v to the length of the path from r to v.

o A planar rooted tree T = (T, r,a7) is defined as a rooted tree
(T,r) and a total order relation a7+ C V(T) x V(T) on the
vertex set V/(T) which satisfies

Q Vu,ve V(T) pr(u) < pr(v) = (u,v) € ar,
Q If {u, v}, {x,y}in E(T), pr(u) = pr(x) = pr(v) =1 =pr(y) -1
and (u, x) € ar, then (v,y) € ar.
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Rooted trees and planar rooted trees

An example of (non-planar) rooted tree with |V(T)| =4

SV

An example of planar rooted tree with |V/(T)| = 4

don s g o

B OWN =
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Rooted forests and planar rooted forests

Definition

A forest F of rooted trees (resp. planar rooted trees) is constructed by
step 1. Removing the root r from a rooted tree (resp. planar rooted tree)
T.

step 2. Designating each vertex v that satisfies p7(v) = 1 as the root of
its connected component in the graph T \ {r}.

Note that a forest of planar rooted trees is equipped with a total order
relation.

A forest F is a disjoint union of rooted trees.
In the planar case, the roots are ordered: (r;, r;) € o whenever i < j.
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Rooted forests and planar rooted forests

An example of (non-planar) rooted forest with |V/(T)| =3

re re r.r

N

An example of planar rooted forest with |V(T)| =3

ro1 r:l  r:1 ri1or:l

e2e3e4 $2e3 293 2 2
W Tl A ks
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‘D-decoration

Definition
Let D be a set. A D-decorated rooted tree (resp. forest) is a rooted

tree D (resp. forest Fp) together with a decoration map dp (resp. dr,)
from V(D) (resp. V(Fp)) to D.

Definition

The opposite tree order of a rooted tree T is a partial order relation
=<7C V(T) x V(T) on V(T) which is defined as (u,v) €< if and only
if the path from r to u contains the path from r to v.

In this talk, the set D is X or ), where X = {xg,x1}, Y = {yn»|n € N}.
We generalize the two definitions above to the planar case by the same
way.
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Arborified multiple zeta values of the first kind

Definition

Arborified multiple zeta values of the first kind are multiple zeta
values associated with a )-decorated rooted tree Y (resp. forest),
defined as the harmonic series associated to the triple (V(Y), <y,dy).

(M= > 11

n,EN veV( Y)
n,<n, if u<yv

where k, is the integer n such that dy(v) = y,.
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Arborified multiple zeta values of the second kind

Definition

Arborified multiple zeta values of the second kind are multiple zeta
values associated with a X'-decorated rooted tree X (resp. forest),
defined as Yamamoto's integral associated to the triple (V/(X), <x,dx).

(X) = 1(X) /A i a8,

veV(X

where A(X ) ffie = (& )vev(X €(0,1)VX) ¢, < t, if u=x v},

Wro(t) = Frwx (t) =

Ku-Yu Fan 14 /35



Multiple zeta values The arborifications 's question (2020)

00000000e

Hopf algebra structure

Foissy (2002) proved the following two polynomial algebras have the
Hopf algebra structure.

Let D be a set.

o Let Q[T ] be the commutative polynomial algebra, where TP is the
set of non-empty D-decorated rooted trees.
Butcher-Connes-Kreimer Hopf algebra (BCK Hopf algebra) of
D-decorated rooted tree HE is defined as the triple (Q[7 7], 7, A)
which is a graded non-commutative Hopf algebra with the product =
and the coproduct A.

o Let Q(TFP) be the non-commutative polynomial algebra, where
TFP is the set of non-empty D-decorated planar rooted trees.
non-commutative Butcher-Connes-Kreimer Hopf algebra
(NBCK Hopf algebra) of D-decorated planar rooted tree HEE - is
defined as the triple (Q(7°P), 7, A) which is a graded
non-commutative Hopf algebra with the product 7 and the
coproduct A. ‘
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Manchon's question

Based on Foissy's work, Manchon introduced the simple arborification ax
and the contracting arborification ay, which are Hopf algebra morphisms.

Manchon posed the question to find a natural map s’ with respect to
the tree structures, which makes the following diagram commutative.

7
Y g X
HBCK HBCK

Q) —— Q(x)
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Manchon's question

Definition

The ladder tree section ¢y of the simple arborification ax (resp. ¢y of
the contracting arborification ay) is defined by

® Xmg ® Ynt
L (Xmy Xmy * * * Xm,) :I Xy resp. £y (Yny Yns =+ * Yn,) :I Yig
Xmy Yny

Note that ladder tree has a unique total order relation «, therefore £
(resp. £y) is also a section of apy (resp. apy). In this case, we use the
notation ¢px» and epy.

Manchon gave an obvious answer, which is given by
s’ =/lyosoay.

It makes the diagram commutative, but has the drawback of completely
destroying the geometry of trees.
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Clavier's attempt

Definition

Let D be a set, and d be an element in D. The grafting operator

BY : HEqc — HEcx (resp. BY : HAE -« — HiEBcx) is an algebra
morphism that maps any D-decorated (resp. planar) rooted forest to a
D-decorated (resp. planar) rooted tree by grafting all components onto
the common root decorated by d.

Definition

Let Y = BY(Y1---Yy) be a Y-decorated rooted tree in ’HlB]CK. The
linear map s™ : Hyrc — Hic is defined recursively by

V(B (Vi V) = (B2) 0 BE(M(Va - Vo),

where
5N(y1 oY) = 5N(y1) .. ~5N(Ym),

a forest of X-decorated rooted trees.
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Clavier's attempt

An example of the natural map s" of a J)-decorated rooted tree.

(35 52
(BR) 1o B (5" .ya.yc)

(B2 0B (6" )5V )
(B2)E1 0 B (7)o B3 (0) (B2)~ 0 BT (1)

790 79X0
=(BP)’toBY|a
i

e

i
b X0
l1

_TOTO

aexXo CeX0

Lbg 1
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Clavier's attempt

Theorem (Clavier, 2020)

Let F be a forest in Hye,. If C(F) converges, then we have

C(s"(F)) < ¢(F).

Furthermore, the equality holds if, and only if, F is a ladder forest.

The following diagram is non-commutative.

N
Yy s X
HBCK HBCK

QY) ——= Q(X)
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Lift of Manchon's question

Based on Foissy’s work, we generalize our setting to the case of planar
rooted trees.

Definition

The natural projection from NBCK Hopf algebra HiE- = Q(TFP) to
BCK Hopf algebra HE« = Q[T ] by removing the total order relation is
denoted by ap, which is an algebra morphism.

The lifting map apx,{px,s™V,aPY, lpy are defined by such that the
following diagram commutative.

PN
P s px
ey Hidex > Hypck lpx

apy . l \L N apx
ay ax
N

Q) < HYe —— HE e —2= Q(X)
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The error term

From Clavier’s theorem, we know that

axosV(Y)#soay(Y).

To make the diagram commutative, it is sufficient to consider the error
term
f)((s o Cly(Y) — ax OEN(Y)).

The map 57 must send Y to sV(Y) + £x(s0ay(Y) —ax osV(Y)). Let
Y be the simplest non-ladder forest BY*(B*(0) B} (0)).
In this case, the error term £x (50 ay(Y) — ax osV(Y)) is given by

a—i+c—1\1" Sc—ita-1\I"
Iya+‘_- —Z( c—1 ){ _ij#»Cfl —; a1 Yatc—i

Note that this error term is determined by a rooted tree and two vertices
cannot be compared in opposite tree order.
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The error term

Definition

Let T be a planar rooted tree. The minimal incomparable pair of T is
defined as minimal element of V/(T) x V(T)\ <7 with respect to the
lexicographic order associated to a .

Definition

| A

Let Y be a Y-decorated planar rooted tree, and let (a, b) be the minimal
incomparable pair of Y. The error term Y¢ of a )-decorated planar
rooted tree Y is defined as

Bl o0 BY (B (F, Fp) F)

n,—1 q
a _ _1 . 5
=3 (T T B oo B (B (BL(R) F) )
i=1

np—

._.

_ —-1 2 i
( o= ”a )Bfl o---o0 BYm(B " (BY.(Fs) Fa) F).
i=1
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The process tree

Definition

The process tree pr(Y) of the contracting arborification apy of a
Y-decorated planar rooted tree Y is a Hj%qx-decorated planar rooted
tree defined recursively by

pr(Y) = BY (pr(Yars) pr(Y5) pr(Y7)),
where (a, b) is the minimal incomparable pair of Y and

Yarp i =B 0o 0 B (B (F, Fp) F)
YZ =B o0 B (BY* (B (Fb) Fa) F)
YP =Bl o0 B (B (BL*(F) Fo) F).
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question (2020)

The process tree

Consider the Y-decorated planar rooted tree

By

Y = N\
&y Ya YsYe

The process tree pr(Y) is given by

where
Yb Yb
Yoir =17 YO =3y Y=ty
Ca/ Yatc > Cola T ‘
Ye Ya
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Main theorem

The linear map ¢ : H?BJCK — HZJB’CK is defined by

(b(y) =Y+ Z (5pr(Y)(V))e o

veV(pr(Y))

The map 5”7 is defined by

sTT(Y) =5 o (V).
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Main theorem

The following diagram is commutative.
P
Hier
¢ 5PN

p PT
Hunsek - Hiack
apy apx

Q) . Q(X)
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Answer to Manchon's question

Definition

Let Y be a Y-decorated rooted tree and Ay the set of all total order
relations that can make Y a planar rooted tree. The order of this set
|Ay| is given by

deg(r) x H (deg(v) —1).

veV(Y)\leaf(Y)\{r}
The section By of &y is defined by
1
Y)=—— Ya,
ﬁy( ) ‘AY‘ Z
a€lAy|

where Y, is the ))-decorated planar rooted tree obtained by equipping
the Y-decorated rooted tree Y with the total order relation o € Ay. The
map s’ is defined by

ax OEPTOﬂy. ‘
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Corollary (F.)

The following diagram is commutative.
Py
Hgck
/ s
PT
PY s PX
Hppek Hisex
By dx
T
@y | Hypex : Hick | orx
ay ax
5
Q) Q(x)
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Thank you for your attention!
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